2 resultados para Cultivated mushroom

em WestminsterResearch - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of bacterial communication, also known as quorum sensing is an important mechanism in biofilm formation which is fundamental to the development of anti-biofilm strategies. In this current study, the synergy between a quorum sensing inhibitor (cinnamaldehyde) and two antibiotics (ceftazidime and levofloxacin) was evaluated in an attempt to develop a strategy for biofilm disruption using the high-throughput minimum biofilm eliminating concentration (MBEC) assay. Klebsiella pneumoniae and Proteus mirabilis biofilms of initial broth suspensions of 108 colony forming units (CFU) per mL, cultivated on the pegs of the MBEC device were challenged with 5120 µg/ml of ceftazidime and levofloxacin in a double dilution assay in the presence of 500 µM cinnamaldehyde. The minimum inhibitory concentrations (MIC) in the presence of cinnamaldehyde for ceftazidime and levofloxacin were 0.125% (640 µg/mL) and 0.0625% (320 µg/mL) respectively with no significant bacterial growth on LB agar. The MBECs for ceftazidime and levofloxacin were above 5120 and 2560 µg/mL respectively which yielded over 70% reduction in both Klebsiella pneumoniae and Proteus mirabilis biofilms. The above results indicate the possibility that the synergy between antimicrobial agents may lead to biofilm eradication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The increasing resistance of Gram-negative bacteria isolated from nosocomial infections and chronic wounds, such as diabetic foot ulcers has renewed research interests in the use of polymyxins in the treatment of multidrug resistant infections. The added resistance conferred by biofilm development in such infections and the absence of novel antibiotics presuppose that polymyxins are the likely drugs of choice in spite of their nephrotoxicity. The effects of PMB and PMBN have been previously assessed on planktonic bacteria isolated from various infections. Methods: This current study assessed the synergy between a PMB/PMBN and two antibiotics (ceftazidime and levofloxacin) in an attempt to develop a strategy for biofilm disruption using the Minimum Biofilm Eradication Concentration Physiology and Genetic assay (MBEC™ P & G, Innovotech Inc, Edmonton, Alberta, Canada) according to manufacturer’s instructions. Klebsiella pneumoniae (K. pneumoniae) and Proteus mirabilis (P. mirabilis) biofilms of initial broth suspensions of 108 colony forming units per mL, cultivated on the pegs of the MBEC device were challenged with 5120 µg/mL of both ceftazidime and levofloxacin in a ten-fold dilution assay and in the presence of 100 and 500 µg/mL PMB and PMBN. Results: From table of results (Table 1), it can be deduced that both ceftazidime and levofloxacin are very effective in inhibiting biofilm development (as shown by percentage inhibition (PI)) when augmented with PMB and PMBN. This is about 100-fold increase in efficacy when compared to the antibiotics used on their own. The percentage reduction (PR) in biofilm was also increased considerably when PMB and PMBN concentrations were increased to 500 µg/mL. PMB was more effective than its less antibacterial derivative PMBN. Levofloxacin was also found to be more effective than ceftazidime when combined with both PMB and PMBN due to its enhanced cell-membrane permeability and as an anti-DNA replication uncoupling agent. Conclusion: The above results indicate that the synergy between antibiotics and cell membrane permeabilising agents may provide alternate strategies towards biofilm eradication